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The Lagrangian, the Hamiltonian and the constant of motion of the gravitational at-
traction of two bodies when one of them has variable mass is considered. The relative
and center of mass coordinates are not separated, and choosing the reference system
in the body with much higher mass, it is possible to reduce the system of equations
to 1-D problem. Then, a constant of motion, the Lagrangian, and the Hamiltonian are
obtained. The trajectories found in the space position-velocity,(x, v), are qualitatively
different from those on the space position-momentum,(x, p).
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1. INTRODUCTION

Mass variable systems has been important since the foundation of the classical
mechanics and have been relevant in modern physics (López et al., 2004). Among
these type of systems one could mentioned: the motion of rockets (Sommerfeld,
1964), the kinetic theory of dusty plasmas (Zagorodny et al., 2000), propagation of
electromagnetic waves in dispersive and nonlinear media (Serimaa et al., 1986),
neutrinos mass oscillations (Bethem, 1986; Commins and Bucksbaum, 1983),
black holes formation (Helhi et al., 1998), and comets interacting with solar wind
(Biermann, 1971; Nuth et al., 2000; Reeves, 1974). The interest in this last system
comes from the concern about to determinate correctly the trajectory of the comet
as its mass is changing. This system belong to the so called two-bodies problem.
The gravitational two-bodies system is one of the must well known systems in
classical mechanics (Goldstein, 1950) and is the system which made a revolution in
our planetary and cosmological concepts. Normally, one assumes that the masses
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of these two bodies are fixed and unchanged during the dynamical interaction
(Heisler, 1986; Matese et al., 1991). However, this can not be true any more when
one consider comets as one of the bodies. Comets loose part of their mass as
traveling around the sun (or other star) due to their interaction with the solar wind
which blows off particles from their surfaces. In fact, it is possible that the comet
could disappear as it approaches to the sun (Hughes, 1984; Stern and Weissman,
2001). So, one should consider the problem of having one body with variable mass
during its gravitational interaction with other body.

In this paper, one considers the problem of finding the constant of motion,
Lagrangian, and Hamiltonian, for the gravitational interaction of two bodies when
one of them is loosing its mass during the gravitational interaction. The mass of
one of the bodies is assumed much larger than the mass of the other body. Choosing
the reference system on big-mass body, the three-dimensional two-bodies problem
is reduced to a one-dimensional problem. Then, one uses the constant of motion
approach (Kobussen, 1979; Leubner, 1981; López, 1996) to find the Lagrangian
and the Hamiltonian of the system. A model for the mass variation is given for an
explicit illustration of form of these quantities. With this model, one shows that
the trajectories in the space position-velocity (defined by the constant of motion)
are different than the trajectories on the space position-momentum (defined by the
Hamiltonian).

2. REFERENCE SYSTEM AND CONSTANT OF MOTION

Newton’s equations of motion for two bodies interacting gravitationally, seen
from arbitrary inertial reference system, are given by

d

dt

(
m1

dr1

dt

)
= − Gm1m2

|r1 − r2|3 (r1 − r2) (1a)

and

d

dt

(
m2

dr2

dt

)
= − Gm1m2

|r2 − r1|3 (r2 − r1) , (1b)

where m1 and m2 are the masses of the bodies, r1 = (x1, y1, z1) and
r2 = (x2, y2, z2) are the vectors position of the two bodies from our reference
system, G is the gravitational constant, and

|r1 − r2| = |r2 − r1| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

is the Euclidean distance between the two bodies. It will be assumed that m1 is
constant and that m2 varies with respect the time. Taking into consideration this
mass variation, Eqs. (1a) and (1b) are written as

m1
d2r1

dt2
= − Gm1m2

|r1 − r2|3 (r1 − r2) (2)
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and

m2
d2r2

dt2
= − Gm1m2

|r2 − r1|3 (r2 − r1) − ṁ2
dr2

dt
, (3)

where it has been defined ṁ2 as ṁ2 = dm2/dt . Now, let us consider the usual
relative, r, and center of mass, R, coordinates defined as

r = r2 − r1 , and R = m1r1 + m2r2

m1 + m2
. (4)

Let us then differentiate twice these coordinates with respect the time, taking
into consideration the equations (2) and (3). Thus, the following equations are
obtained

r̈ = − (m1 + m2)G

r3
r − ṁ2

m2
ṙ2 (5)

and

R̈ = −ṁ2

m1 + m2
ṙ2 + 2m2ṁ2

(m1 + m2)2
ṙ + (m1 + m2)m1m̈2 − 2m1ṁ

2
2

(m1 + m2)3
r . (6)

One sees that the relative motion does not decouple from the center of mass
motion. So, these new coordinates are not really useful to deal with mass variation
systems. In fact, using (4) , one has

r2 = R + m1

m1 + m2
r , and ṙ2 = Ṙ + m1

m1 + m2
ṙ − m1ṁ2

(m1 + m2)2
r . (7)

Substituting these expressions in (5) and (6), one can see more clearly this
coupling,

r̈ =
[
m1 + m2)G

r3
+ m1ṁ

2
2

m2(m1 + m2)2

]
r − ṁ2

m2

[
Ṙ + m1

m1 + m2
ṙ
]

(8)

and

R̈ = −ṁ2

m1 + m2
R + m1ṁ2

(m1 + m2)2
ṙ + (m1 + m2)m1m̈2 − m1ṁ

2
2

(m1 + m2)3
r . (9)

However, one can consider the case for m1 � m2 (which is the case star-
comet), and consider to put our reference system just on the first body (r1 = �0).
In this case, Eq. (3) becomes

m2
d2r
dt2

= −Gm1m2

r3
r − ṁ2ṙ , (10)

where r = r2 = (x, y, z). Using spherical coordinates (r, θ, ϕ),

x = r sin θ cos ϕ , y = r sin θ sin ϕ , z = r cos θ , (11)
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Equation (10) can be written as

m2
d2r
dt2

= −
[
Gm1m2

r2
+ ṁ2ṙ

]
r̂ + ṁ2

(
rθ̇ θ̂ + rϕ̇ sin θ ϕ̂

)
, (12)

where r̂ , θ̂ and ϕ̂ are unitary directional vectors,

r̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) , with ˙̂r = θ̇ θ̂ + ϕ̇ sin θ ϕ̂ (13a)

θ̂ = (cos θ cos ϕ, cos θ sin ϕ,− sin θ ) with ˙̂θ = −θ̇ r̂ + ϕ̇ cos θ ϕ̂ (13b)

and

ϕ̂ = (− sin θ, cos θ, 0) , with ˙̂ϕ = sin θ r̂ + cos θ θ̂ . (13c)

Since one has that r = rr̂ , it follows that

r̈ = (r̈ − rθ̇2 + rϕ̇ sin2 ϕ)̂r + (2ṙ θ̇ + rθ̈ + rϕ̇ sin θ cos θ )θ̂

+ (2ṙ ϕ̇ sin θ + rϕ̈ sin θ + 2ϕ̇θ̇ cos θ )ϕ̂ (14)

and Eq. (12) is discomposed in the following three equations

m2(r̈ − rθ̇2 + rϕ̇ sin2 ϕ) = −Gm1m2

r2
− ṁ2ṙ (15a)

m2(2ṙ θ̇ + rθ̈ + rϕ̇ sin θ cos θ ) = ṁ2rθ̇ , (15b)

and

m2(2ṙ ϕ̇ sin θ + rϕ̈ sin θ + 2ϕ̇θ̇ cos θ ) = ṁ2rϕ̇ sin θ . (15c)

Thus, one has obtained coupling among these coordinates due to the term
ṁ2. Nevertheless, one can restrict oneself to consider the case ṁ2r ≈ 0. For this
case, it follows that ϕ̇ = 0, and the resulting equations are

m2(r̈ − rθ̇2) = −Gm1m2

r2
− ṁ2ṙ , (16a)

and

m2(2ṙ θ̇ + rθ̈) = 0 . (16b)

Let mo be the mass of the second body when this one is very far away from
the first body (when a comet is very far away from the sun, the mass of the comet
remains constant). Since m2 �= 0 on (16b), the expression inside the parenthesis
must be zero. In addition, one can multiply this expression by mor to get the
following constant of motion

Pθ = mor
2θ̇ . (17)
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Using this constant of motion in (16a), one obtains the equation

d2r

dt2
= −Gm1

r2
+ P 2

θ

m2
or

3
− ṁ2

m2

(
dr

dt

)
. (18)

This equation represents a dissipative system for ṁ2 > 0 and anti-dissipative
system for ṁ2 < 0. Suppose now that m2 is a function of the distance between the
first and second body, m2 = m2(r). Therefore, it follows that

dm2

dt
= dm2

dr

dr

dt
, (19)

and Eq. (18) can be written as

d2r

dt2
= −Gm1

r2
+ P 2

θ

m2
or

3
− m′

2

m2

(
dr

dt

)2

, (20)

where m′
2 = dm2/dr . This equation can be seen as the following autonomous

dynamical system (Drazin, 1992)

dr

dt
= v ,

dv

dt
= −Gm1

r2
+ P 2

θ

m2
or

3
− m′

2

m2
v2 . (21)

A constant of motion for this system is a function K = K(r, v) such that the
following partial differential equation is satisfied (López, 1996)

v
∂K

∂r
+

(−Gm1

r2
+ P 2

θ

m2
or

3
− m′

2

m2
v2

)
∂K

∂v
= 0 . (22)

This equation can be solved by the characteristic method (John, 1974) from
which the following characteristic curve results

C(r, v) = m2
2(r)v2 + 2Gm1

∫
m2

2(r) dr

r2
− 2P 2

θ

m2
o

∫
m2

2(r) dr

r3
, (23)

and the general solution of (22) is given by

K(r, v) = F (C(r, v)) , (24)

where F is an arbitrary function of the characteristic curve. One can have a constant
of motion with units of energy by selecting F as F = C/2mo. That is, the constant
of motion is given by

K(r, v) = m2
2(r)

2mo

v2 + Gm1

mo

∫
m2

2(r) dr

r2
− P 2

θ

m3
o

∫
m2

2(r) dr

r3
. (25)
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3. LAGRANGIAN AND HAMILTONIAN

Given the time independent constant of motion (25), the Lagrangian of the
system (20) can be obtained using the following known expression (Kobussen,
1979; Leubner, 1981; López, 1996)

L(r, v) = v

∫
K(r, v) dv

v2
. (26)

Thus, the Lagrangian is given by

L(r, v) = m2
2(r)

2mo

v2 − Gm1

mo

∫
m2

2(r) dr

r2
+ P 2

θ

m3
o

∫
m2

2(r) dr

r3
. (27)

The generalized linear momentum (p = ∂L/∂v) is

p = m2
2(r)

mo

v , (28)

and the Hamiltonian is

H (r, p) = mop
2

2m2
2(r)

+ Gm1

mo

∫
m2

2(r) dr

r2
− P 2

θ

m3
o

∫
m2

2(r) dr

r3
. (29)

Note from (25) and (29) that the constant of motion and Hamiltonian can be
written as

K(r, v) = m2
2(r)

2mo

v2 + Veff(r) (30)

and

H (r, p) = mop
2

2m2
2(r)

+ Veff(r) , (31)

where Veff is the effective potential energy defined as

Veff(r) = Gm1

mo

∫
m2

2(r) dr

r2
− P 2

θ

m3
o

∫
m2

2(r) dr

r3
. (32a)

This potential energy has an extreme value at the point

r∗ = P 2
θ

Gm1m2
o

(32b)

which depends on mo but it does not depend on the model for m2(r). One can see
that this extreme value is a minimum for m2(r∗) �= 0, since one has that(

d2Veff

dr2

)
r=r∗

= (Gm1mo)4mom
2
2(r∗)

P 6
θ

> 0 . (33)
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On the other hand, because of the expression (28), one could expect different
behavior of a trajectory in the phase space (r, v) and the phase space (r, p). The
trajectory r(θ ) is found using the relation dr/dt = (dr/dθ )θ̇ , and the Eq. (17) in
(30) to get ∫ θ

θo

dθ = Pθ√
2m3

o

∫ r

ro

m2(r) dr

r2
√

K − Veff(r)
, (34a)

where K and Pθ are determinate by the initial conditions, K = K(ro, vo) and
Pθ = mor

2
o θ̇o. The time of half of cycle of oscillation, T1/2, is obtained directly

from Eq. (30) as

T1/2 = 1√
2mo

∫ r2

r1

m2(r) dr√
K − Veff(r)

, (34b)

where r1 and r2 are the two return points deduced as the solution of the following
equation

Veff(ri) = K , i = 1, 2 . (34c)

4. MODEL OF VARIABLE MASS

As a possible application of (25) and (29), consider that a comet looses
material as a result of the interaction with star wind in the following way (for one
cycle of oscillation)

m2(r) =
⎧⎨
⎩

moo

√
1 − e−αr incoming (v < 0)

mie
α(r1−r) + mf (1 − e−αr ) outgoing (v > 0)

(35)

where moo or mf (where mf = 2mi − moo by symmetry) is the mass of the comet
very far away from the star (in each case), mi is the mass of the comet at the
closets approach to the star (distance r1), mi = moo

√
1 − e−αr1 , and α is a factor

that can be adjusted from experimental data. Thus, the effective potential (32a)
has the following form for the incoming case (mo = moo)

V
(in)

eff (r) = −Gm1moo

r
(1 − e−αr ) + P 2

θ

2moor2
(1 − e−αr )

+
[
GM1mooα + α2P 2

θ

2moo

]
Ei(−αr) + αP 2

θ e−αr

2moor
, (36a)

where Ei(x) is the exponential-integral function (Gradshteyn and Ryzhikm, 1980).
For the outgoing case, one has mo = mf and

V
(out)

eff (r) = −Gm1mf

r
+ P̃ 2

θ

2mf r2

+ Gm1(mie
αr1 − mf )2

mf

[
−e−2αr

r
− 2αEi(−2αr)

]
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− P̃ 2
θ (mie

αr1 − mf )2

m3
f

[
−e−2αr

2r2
+ αe−2αr

r
+ 2Ei(−2αr)

]

+ 2Gm1(mie
αr1 − mf )

[
−e−αr

r
− αEi(−αr)

]

− 2P̃ 2
θ (mie

αr1 − mf )

m2
f

[
−e−αr

2r2
+ αe−αr

2r
+ α2

2
Ei(−αr)

]
(36b)

where P̃θ is defined now as P̃θ = mf r2θ̇ . The extreme point of the effective
potential (32b) for the incoming and outgoing cases is given by

r∗
in = P 2

θ

Gm1m2
oo

, r∗
out = P 2

θ

Gm1m
2
f

(37)

Given the definition (35), the constant of motion, Lagrangian, generalized linear
momentum, and Hamiltonian are given by

K (i)(r, v) = m2
2(r)

2mo

v2 + V
(i)

eff (r), (38)

0 100 200 300 400 500
r

-8 10
23

-6 10
23

-4 10
23

-2 10
23

0

2 10
23

4 10
23

(1)
(2)

(3)

Fig. 1. V
(in)
eff (r) with the values of the parameters given on (42), for α = 1 (1); α = 0.01 (2); and

α = 0.005 (3).
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40

60

80

r
1

r
2

Fig. 2. Maximum (r2) and minimum (r1) distances between the two bodies as a function of the
parameter α.

L(i)(r, v) = m2
2(r)

2mo

v2 − V
(i)

eff (r), (39)

p(i)(r, v) = m2
2(r)

mo

v, (40)

and

H (i)(r, p) = mop
2

2m2
2(r)

+ V
(i)

eff (r) , (41)

where i = in for the incoming case, and i = out for the outgoing case. As an
example of illustration of this model, let us use the following parameters to
estimate the dependence of several physical quantities with respect the parameter
α,

G = 6.67 × 10−11 m3/Kg sec ; moo = 106 Kg ; mf = 0.1 moo ;

Pθ = 1017 Kg m2/sec ; and K = −8 × 1023 Joules (42)

Fig. 1 shows the curves of Veff(r) for several values of α (incoming case). As one
can see from this figure, the location of the minimum does not change, but the
minimum value of Veff tends to disappear as α goes to zero. Also for the incoming
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25 50 75 100 125 150 175 200
r

0

-V

25 50 75 100 125 150 175 200
r

0

-P
/m

0

(1)

(1)

(2)

(2)

(3)

(3)

(a)

(b)

Fig. 3. (a): Trajectories in the plane (r, v); (b): Trajectories in the plane (r, p). α = 1 (1), α = 0.01
(2), and α = 0.005 (3).

case, Fig. 2 shows how the minimum distance of approximation of the two bodies,
r1, and maximum distance, r2, behave as a function of the parameter α. As one
can guess, the following limit is satisfied limα→0 r1 = limα→0 r2 = r∗ which will
become a inflexion point for Veff . Fig. 3 shows the velocity (v) and normalized
linear momentum (p/mo) as a function of r for several values of α and for the
incoming case. All the trajectories start at r2 = 200 and finish at r1(α). One can
see the difference of the trajectories in (a) with respect to (b) due to position
dependence of the momentum, relation (40).

5. CONCLUSIONS

The Lagrangian, Hamiltonian and a constant of motion of the gravitational
attraction of two bodies when one of them has variable mass were given. One
found that the relative and center of mass coordinates are coupled due to this mass
variation. However, chosen the reference system in the much more massive body,
it was possible to reduce the system to 1-D problem. Then, the constant of motion,
Lagrangian and Hamiltonian were obtained. One main feature of these quantities
was the appearance of an effective potential, which is reduced (when ṁ2 = 0) to
the usual gravitational effective potential of two bodies with fixed masses. Other
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feature was the distance dependence of the generalized linear momentum. A model
for comet-mass-variation was given which depends on the parameter α. A study
was made of the dependence with respect to α of Veff , minimum and maximum
distance between the two bodies, and the trajectories in the spaces (r, v) and (r, p).
Of course, the problem of the interaction comet-star with the variation of mass
deserves more complete analysis. The intention here with this example was to
show explicitly the form of the constant of motion, Lagrangian, and Hamiltonian
and to point out the different trajectories behavior in the spaces (r, v) and (r, p)
arising from the constant of motion and Hamiltonian.
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Sommerfeld, A. (1964). Lectures on Theoretical Physics, Vol. I, Academic Press.
Stern, S. A. and Weissman, P. A. (2001). Nature 409, 589.
Zagorodny, A. G., Schram, P. P. J. M., and Trigger, S. A. (2000). Phys. Rev. Lett. 84, 3594.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


